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Integral variational principles are proposed for nonstationary heat
conduction problems. These lead to integration of the wave equation
of heat conduction or the Fourier heat conduction equation with the
initial and boundary conditions.

Many studies [1—11] have been devoted to the varia-
tional formulation of nonstationary problems of heat
conduction. Most of these studies involve the Biot in-
tegrodifferential variational principle. In the Biot
principle the variable expression is a function of time
since it is represented in the form of definite integrals
only with respect tothe space coordinates. Accordingly,
in the approximate solution of heat conduction prob-
lems the Biot principle is used together with the Kan-
torovich method which reduces the problem to the so-
lution of systems of ordinary differential equations
with respect to time, and not with the Ritz method,
making it possible to reduce the problem fo the solu-
tion of systems of algebraic equations.

In this paper we present integral variational prin-
ciples that permit the solution of nonstationary heat
conduction problems by the Ritz method. The mixed
problem of heat conduction was previously formulated
as a variational problem in [12]. But the natural condi-
tion of stationarity of the functional proposed in [12] is
not the differential equation of heat conduction but some
equivalent integrodifferential equation.

In formulating the variational principle of heat con-
duction we start from the wave equation of heat conduc-
tion recently derived by Kaliski [13]. The hyperbolic
type of this equation ensures a finite rate of propaga-
tion of the thermal perturbations, which is particularly
important in problems in which, apart from thermal
effects, it is necessary to take into account the in-
fluence of other fields (electromagnetic, elastic).

In the second and third parts of this paper different
variational formulations of the Fourier heat conduc-
tion equation are presented.

1. Variational formulation of the wave equation of
heat conduction. Let a problem of heat transfer theory
be given in the following form: find the solution of
the heat conduction equation [13]

(kT ), =tpcT +pcT PED, i>0 (1)
with boundary conditions
T=fP, 1) PEB, t>0, (2)

KT ,=q(P, ) PCB, (>0 (3)

and initial conditions
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T=®F) PED, t=0, (4)
tT=«¥®) PED, t=0. (5)

If the relaxation coefficient 7 = 0, then Eq. (1) and
relations (2)—(5) reduce to the Fourier heat conduction
equation and the corresponding boundary and initial
conditions.

We will show that problems (1)—(5) can be formu-
lated as a variational problem.

We denote the convolution integrals with respect to
time t by

iy
A*B:"A(P, HB(P, t,— f)dt (6)
0

and introduce the functional
[— —;—g (BT T 4+ 10T kT +oct kT +
D

+ 2tpc[T (P, 0O)—DP)] TP, )+
+pcIT (P, 0)—20(PNT (P, t,) —
—2tpc W (PYT (P, 1)} dV —
ngq*TdS—jl E(T —0 kT n4dS. (7)
By B,

We have the following variational principle: for a
true temperature distribution satisfying Eq. (1) and
conditions (2)—(5) in the time interval (0, t;) the func-
tional (7) has a stationary value, i.e.,

§1=0. (8)

In fact, forming the first variation of functional (7)
and transforming it using the Ostrogradskii formula,
we obtain

87 ='Y{[—(kT,i),i+PCT+TPCT1*6T+
+pcIT(P, 0)—@PIST (P, 4) +18T (P, 1) +
+1pcIT(P, )— W (PIST (P, 1)} dV +
+ [ T, —gxoTds —

B

_j"k(T—f)*aT.in[aS. (9)
B,
Given the fundamental lemma of the calculus of

variations, the validity of the above variational princi-
ple follows directly from relation (9).
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2. Variational formulations of the Fourier heat

conduction equation. When 7 = 0 functional (7) sim-
plifies to the form

[ = %g{kr,i*r,i+ch*T+oc[T(P, 0)—
D
— 20(P)T (P, t)}dV —

~fq*TdS—5k(T—f)*T,inidS. (10)
By By

The stationarity conditions of functional (10) are
the equation

(kT);=pcl PED, t>0, (11)

boundary conditions (2), (3) and initial condition (4).
Functional (10) can be reduced to "canonical form™":

1 i .
1=—§S{—72-G,*G£+ch>kT—
D

—9GkT +pciT®, 0)— 20 (PIT (P, tl)} av —
—S‘q*TdS——Xk(T—f)*Ginids. (12)
By B,
Here, the independent variable functions are T and Gj.

- Correspondingly, the Euler-Lagrange equations of
functional (12) will be

peT =—G,, (13)
T, ——-Lg (14)
o k g

Systems (13}, (14) are equivalent to Eq. (11).

3. The Biot variational method. Equation (11) can
also be represented in the form of the equivalent sys~
tem

pel = —Hy, (15)

1 .-
T'i‘:'—“'—k‘-Hi. (16)

The Biot variational equation [2—7] relates precisely

to system (15), (16) and has the form

6——;—§chde+ y—i«HiSHl=§T6Hin,dS. (17)
D D B

Here, it is assumed that the variable quantities T, Hj
satisfy Eq. (15), i.e.,

pcdT =—8H,, (18)

The idea underlying the construction of the varia-
tional equations in the earlier sections of this paper
can also be used to formulate the integral variational
principle corresponding to integrodifferential equation
(17).

INZHENERNO-FIZICHESKII ZHURNAL

To be specific, we will take the boundary and ini-
tial conditions for Egs. (15), (16) in the form
T=f(P, 1)

P¢B, t>0, - (19)

T=®@P) PcD. (20)
The problem (15), (16), (19), (20) can be formulated

in the form of the following variational principle: if

the temperature T and the heat flow vector Hj are re-

lated by Eq. (15) and initial condition (20) is satisfied,

then the solution of Eg..(16) with boundary condition

(19) is such that the variational equation

6{§(ch>kT+%H,>kH,)dV+
D .
+2§f*ﬂ,nids}=%m,.(a 0)8 H, (P, £,)—
) |

—H, (P, t,)8 H,(P, 0)] (21)

is satisfied.

In order to demonstrate the validity of this princi-
ple, we used relation (18) and the Ostrogradskii for-
mula to reduce Eq. (21) to the form

25(T_,+%H,- )%GHidV—

J |

—2f(T—f)>k6Hini ds — 0. (22)
B

Equation (16) and boundary condition (19) follow
directly from relation (22).

NOTATION

T is the temperature; ( ),j is the partial deriva-
tive with respect to the space coordinate x;, i.e.,
T,i = 8T/8x (i =1,2,3); () is the partial derivative
with respecttotime, i.e., T = 8T/8t; kis the thermal
conductivity; 7 isthethermalrelaxation coefficient; p is
the density; c is the specific heat of material; P is the
point with coordinates xi; D is the region occupied by
body; B is the boundary surface of body; B; is the
part of boundary surface where the temperature dis-
tribution is given; By is the rest of surface where heat
supply is given; nj are the components of the unit vec-
tor along the exterior normal to boundary surface; f
is the given temperature distribution; q is the given
heat supply; @ is the given initial temperature distrib-
ution; ¥ is the given initial temperature "rate" distrib-
ution; Hj is the heat flux vector.
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